MTH 406: Differential geometry of curves and surfaces

Homework VI: Surface area, First fundamental form, and Conformal maps

Problems for practice

- 1. Establish the assertions in 2.6(iv), 2.7(ii), and 2.7(iv)-(vi) of the Lesson Plan.
- 2. Derive a general formula for the area of a surface of revolution in 2.2(viii)(a) of the Lesson Plan. Use this to compute the surface area of the torus T^2 in 2.1(ii)(b) of the Lesson Plan, as a surface of revolution.
- 3. Compute the area of the Möbius band M in 2.4(vii)(e) of the Lesson Plan.
- 4. Let $f: S_1 \to S_2$ be a diffeomorphism between regular surfaces. Prove that f is an isometry if, and only if, for every curve $\gamma: [a, b] \to S_1$, the length of γ equals the length of $f \circ \gamma$.
- 5. A function $f : S_1 \to S_2$ is a local diffeomorphism (resp. isometry) if for each $p \in S_1$, there exists a neighborhood $U_p \ni p$ such that $f|_{U_p} : U_p \to f(U_p)$ is a diffeomorphism (resp. isometry).
 - (a) Show that the map $f : \mathbb{R}^2 \to C : (x, y) \stackrel{f}{\mapsto} (\cos(x), \sin(x), y)$, where $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$

is a local isometry. Show that these surfaces are not globally diffeomorphic.

(b) Construct a local diffeomorphism from the cylinder

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \text{ and } z \in (-1/2, 1/2)\}$$

to the Möbius strip. Show that these surfaces are not globally diffeomorphic.

- 6. Let $f : \mathbb{R}^2 \to \mathbb{R} : (x, y) \xrightarrow{f} xy$. Classify the rigid motions of \mathbb{R}^3 that induce isometries on G_f .
- 7. Let $f: S \to \tilde{S}$ be a diffeomorphism of regular surfaces. Show that the following statements are equivalent.
 - (a) f is an isometry.
 - (b) For every coordinate patch $\sigma: U \to V(\subset S)$, the first fundamental form of σ equals the first fundamental form of $f \circ \sigma$.
 - (c) Every $p \in S$ is covered by a coordinate patch $\sigma : U \to V (\subset S)$ such that the first fundamental form of σ equals the first fundamental form of $f \circ \sigma$.
- 8. Compute the first fundamental forms for the sphere S^2 (determined by the stereographic projection), the cylinder, the torus T^2 , and the Möbius band M.
- 9. Let S be a regular surface, and $f: U \to V (\subset S)$ is a surface patch with the first fundamental form $Efdu^2 + 2Fdu \, dv + Gdv^2$. Show that:
 - (a) f is an isometry if, and only if, E = G = 1, and F = 0.
 - (b) f is an equiareal map if, and only if, $\sqrt{EG F^2} = 1$.
 - (c) f is a conformal map if, and only if, E = G, and F = 0.